direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C23.36D4, C24.170D4, D4⋊5(C22×C4), C4.6(C23×C4), Q8⋊5(C22×C4), C4⋊C4.342C23, (C2×C4).176C24, (C2×C8).391C23, C23.639(C2×D4), (C22×C4).780D4, C4.141(C22×D4), D4⋊C4⋊84C22, Q8⋊C4⋊87C22, (C2×D4).360C23, (C2×Q8).333C23, (C2×M4(2))⋊69C22, (C22×M4(2))⋊19C2, (C22×C8).424C22, (C23×C4).514C22, (C22×C4).900C23, C22.126(C22×D4), C22.105(C8⋊C22), C23.131(C22⋊C4), (C22×D4).553C22, C22.94(C8.C22), (C22×Q8).457C22, C4○D4⋊13(C2×C4), (C2×C4○D4)⋊19C4, (C2×D4)⋊48(C2×C4), (C2×Q8)⋊39(C2×C4), C2.2(C2×C8⋊C22), (C22×C4⋊C4)⋊32C2, C4.98(C2×C22⋊C4), (C2×D4⋊C4)⋊49C2, (C2×C4⋊C4)⋊114C22, C2.2(C2×C8.C22), (C2×Q8⋊C4)⋊50C2, (C2×C4).1406(C2×D4), (C22×C4).324(C2×C4), (C2×C4).461(C22×C4), (C22×C4○D4).19C2, C22.21(C2×C22⋊C4), C2.38(C22×C22⋊C4), (C2×C4).158(C22⋊C4), (C2×C4○D4).273C22, SmallGroup(128,1627)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C23.36D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde3 >
Subgroups: 716 in 408 conjugacy classes, 180 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, D4⋊C4, Q8⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×D4⋊C4, C2×Q8⋊C4, C23.36D4, C22×C4⋊C4, C22×M4(2), C22×C4○D4, C2×C23.36D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C8⋊C22, C8.C22, C23×C4, C22×D4, C23.36D4, C22×C22⋊C4, C2×C8⋊C22, C2×C8.C22, C2×C23.36D4
(1 39)(2 40)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 56)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 60)(26 61)(27 62)(28 63)(29 64)(30 57)(31 58)(32 59)
(1 9)(2 14)(3 11)(4 16)(5 13)(6 10)(7 15)(8 12)(17 62)(18 59)(19 64)(20 61)(21 58)(22 63)(23 60)(24 57)(25 54)(26 51)(27 56)(28 53)(29 50)(30 55)(31 52)(32 49)(33 43)(34 48)(35 45)(36 42)(37 47)(38 44)(39 41)(40 46)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 17)(7 18)(8 19)(9 61)(10 62)(11 63)(12 64)(13 57)(14 58)(15 59)(16 60)(25 48)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 19 20 8)(2 7 21 18)(3 17 22 6)(4 5 23 24)(9 64 61 12)(10 11 62 63)(13 60 57 16)(14 15 58 59)(25 30 48 45)(26 44 41 29)(27 28 42 43)(31 32 46 47)(33 56 53 36)(34 35 54 55)(37 52 49 40)(38 39 50 51)
G:=sub<Sym(64)| (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,56)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59), (1,9)(2,14)(3,11)(4,16)(5,13)(6,10)(7,15)(8,12)(17,62)(18,59)(19,64)(20,61)(21,58)(22,63)(23,60)(24,57)(25,54)(26,51)(27,56)(28,53)(29,50)(30,55)(31,52)(32,49)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(25,48)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,20,8)(2,7,21,18)(3,17,22,6)(4,5,23,24)(9,64,61,12)(10,11,62,63)(13,60,57,16)(14,15,58,59)(25,30,48,45)(26,44,41,29)(27,28,42,43)(31,32,46,47)(33,56,53,36)(34,35,54,55)(37,52,49,40)(38,39,50,51)>;
G:=Group( (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,56)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59), (1,9)(2,14)(3,11)(4,16)(5,13)(6,10)(7,15)(8,12)(17,62)(18,59)(19,64)(20,61)(21,58)(22,63)(23,60)(24,57)(25,54)(26,51)(27,56)(28,53)(29,50)(30,55)(31,52)(32,49)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46), (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(25,48)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,20,8)(2,7,21,18)(3,17,22,6)(4,5,23,24)(9,64,61,12)(10,11,62,63)(13,60,57,16)(14,15,58,59)(25,30,48,45)(26,44,41,29)(27,28,42,43)(31,32,46,47)(33,56,53,36)(34,35,54,55)(37,52,49,40)(38,39,50,51) );
G=PermutationGroup([[(1,39),(2,40),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,56),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,60),(26,61),(27,62),(28,63),(29,64),(30,57),(31,58),(32,59)], [(1,9),(2,14),(3,11),(4,16),(5,13),(6,10),(7,15),(8,12),(17,62),(18,59),(19,64),(20,61),(21,58),(22,63),(23,60),(24,57),(25,54),(26,51),(27,56),(28,53),(29,50),(30,55),(31,52),(32,49),(33,43),(34,48),(35,45),(36,42),(37,47),(38,44),(39,41),(40,46)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,17),(7,18),(8,19),(9,61),(10,62),(11,63),(12,64),(13,57),(14,58),(15,59),(16,60),(25,48),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,19,20,8),(2,7,21,18),(3,17,22,6),(4,5,23,24),(9,64,61,12),(10,11,62,63),(13,60,57,16),(14,15,58,59),(25,30,48,45),(26,44,41,29),(27,28,42,43),(31,32,46,47),(33,56,53,36),(34,35,54,55),(37,52,49,40),(38,39,50,51)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | ··· | 4H | 4I | ··· | 4T | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C8⋊C22 | C8.C22 |
kernel | C2×C23.36D4 | C2×D4⋊C4 | C2×Q8⋊C4 | C23.36D4 | C22×C4⋊C4 | C22×M4(2) | C22×C4○D4 | C2×C4○D4 | C22×C4 | C24 | C22 | C22 |
# reps | 1 | 2 | 2 | 8 | 1 | 1 | 1 | 16 | 7 | 1 | 2 | 2 |
Matrix representation of C2×C23.36D4 ►in GL8(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 16 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
8 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 |
0 | 0 | 0 | 0 | 15 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 13 | 13 |
0 | 0 | 0 | 0 | 15 | 0 | 2 | 0 |
8 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 |
0 | 0 | 0 | 0 | 15 | 13 | 15 | 13 |
0 | 0 | 0 | 0 | 4 | 4 | 13 | 13 |
0 | 0 | 0 | 0 | 15 | 13 | 2 | 4 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,2,16,0,0,0,0,16,1,0,0,0,0,0,0,15,1,0,0],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[8,6,0,0,0,0,0,0,15,9,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,15,4,15,0,0,0,0,4,0,4,0,0,0,0,0,4,15,13,2,0,0,0,0,4,0,13,0],[8,7,0,0,0,0,0,0,15,9,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,15,4,15,0,0,0,0,4,13,4,13,0,0,0,0,4,15,13,2,0,0,0,0,4,13,13,4] >;
C2×C23.36D4 in GAP, Magma, Sage, TeX
C_2\times C_2^3._{36}D_4
% in TeX
G:=Group("C2xC2^3.36D4");
// GroupNames label
G:=SmallGroup(128,1627);
// by ID
G=gap.SmallGroup(128,1627);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,352,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^3>;
// generators/relations